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Standing surface waves of finite amplitude 

By IRADJ TADJBAKHSH AND JOSEPH B. KELLER 
Institute of Mathematical Sciences, New York University 

(Received 21 December 1959) 

Gravity waves on the surface of an inviscid incompressible fluid of finite depth 
are considered. The waves are assumed to be periodic in time and in the hori- 
zontal direction. The surface profile, potential function, pressure and frequency 
of the motion are determined (to third order) as series in powers of the amplitude 
divided by the wavelength. It is found that the frequency increases with ampli- 
tude for depths less than a certain multiple of the wavelength and decreases 
with increasing amplitude for greater depths. Graphs of the surface profile and 
of the pressure as a function of depth are included. 

1. Introduction 
Gravity waves on the surface of a liquid are governed by non-linear equations. 

In  the classical theory of such waves, the equations are linearized. Thus, the 
results of that theory yield the linear terms in the expansion of the wave motion 
in powers of the amplitude. We shall determine two additional terms in this 
expansion for standing waves in a liquid of uniform finite depth. Our results 
will then exhibit various deviations from those of the linear theory. For example, 
the period will depend upon the amplitude, the motion will not be sinusoidal in 
time nor in space, and the maximum elevation will not equal the minimum 
depression. These effects become more pronounced the larger the amplitude. 
They are described and depicted graphically in 9 4. 

Similar results have been obtained for liquid of infinite depth by Penney & 
Price (1952). Our results for the wave profile and the period coincide with theirs 
when we permit the depth to become infinite. However, our analysis indicates 
that in the expression for the fluid pressure there are additional terms, indepen- 
dent of the vertical distance, which they have not taken into account. Airy, 
Stokes, Rayleigh and others have obtained analogous results for progressing 
waves. 

We formulate the problem in the next section and solve it by a perturbation 
method in 5 3. Then we discuss the results in 9 4 where some graphs are also given. 
In  the Appendix we show how the method of Penney & Price can be modified 
to yield the same results, although it requires more labour than our method. 

2. Formulation 
Let us consider the time-periodic irrotational two-dimensional motion of an 

inviscid incompressible fluid bounded below by a rigid horizontal bottom and 
above by a free surface. We suppose the motion to be periodic in the horizontal 
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direction and symmetric about the vertical plane x = 0. Then we may confine 
our attention to the fluid between that plane and a parallel plane one half wave- 
length from it. Let h denote the wavelength, k = 3nlh the propagation constant, 
k-lh the mean depth of the liquid, E-lx and k-ly the distances along the hori- 
zontal and vertical axes, respectively, g the acceleration of gravity, (kg)* w the 
angular frequency and (kg)-*w-lt the time. In  addition let a be a measure of 
the wave amplitude, the precise meaning of which will become clear later. Then 
we define 8 = ka and let ek-ly(x, t )  denote the elevation of the surface above the 
mean level given by the plane y = 0. Finally, we introduce the potential function 

In terms of the dimensionless quantities which we have just introduced, the 
&k-Wx, Y, 0. 

equations which govern the motion are 

Aq5 = 0 in 0 < x < n, -h < y < q(x, t ) ,  (1) 

y + ~ q 5 ~ +  ie(q5: + q5;) = 0 on y = q ( x ,  t), ( 2 )  

q5v = @Ti + @,q, on y = Mx,  $1, (3) 

- 0  on x = O , x = n , y = - h ,  (4) 
_ -  aq5 
an 

J .. Y(X, t )  dx = 0, 
0 

/J;11(5,t)cost cosxdtdx = 0, (7 )  

J:h /:!;q5(x,y,t) cost cosx dtdxdy = +n2(tanhh)*. (8) 

Equation (1) expresses the incompressibility of the fluid; (3) is the condition that 
the pressure at the surface, as obtained from Bernoulli's equation, be constant; 
(3) is the condition that a particle on the surface remain on the surface; (4) asserts 
that the bottom y = - h is rigid and that x = 0 and x = 71 are planes of symmetry 
of the motion; ( 5 )  is the condition that the mean surface is y = 0; (6) asserts the 
periodicity of the velocity components; (7)  and (8) fix the phase and amplitude 
of the motion. Equation (8) shows that in the dimensional units, a is propor- 
tional to the Fourier coefficient of y(x, t) with respect to the linearized surface 
profile sint cosx. In  fact a is just the amplitude of the linearized surface wave 
motion. 

The pressure p(x, y, t )  is given by Bernoulli's equation 

Here po  denotes the pressure of the atmosphere above the fluid and p denotes the 
constant density of the fluid. 

The problem we consider i s  that of determining the dimensionless surface 
profile ~ ( x ,  t ) ,  the dimensionless potential function $(x, y, t) and the dimensionless 
angular frequency w satisfying equations (1) to (8). We note that the solution 
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also depends upon the dimensionless depth h, which is proportional to the actual 
depth divided by the wavelength, and the dimensionless constant = ka, which 
is proportional to the linearized amplitude divided by the wavelength. We shall 
solve the problem by determining the first three terms in the expansion of the 
solution in powers of 8. Additional terms can be found by continuing our 
procedure. 

We shall find that, for certain values of h, the problem we have formulated 
does not have a unique solution. This lack of uniqueness does not refer to the 
arbitrary constant which may be added to 4. These values of h are those for 
which the linear theory yields, for some harmonic (in space), a frequency (in time) 
which is an integral multiple of the fundamental frequency. According to the 
linear theory the frequency of the nth spatial harmonic is ( n  tanh nh)*. Thus 
we can make the problem have a unique solution by imposing the condition 

n tanh nh 
tanh h 

+ (integer)2 (n = 2,3, ...). 

Of course the solution we shall obtain will be a solution for any value of h, but 
i t  will not be the only solution satisfying (1) to (8) unless h satisfies (10). 

3. Perturbation solution 
We assume that 7, $ and w have limits qo, $0 and wo as e tends to zero. If we 

set 8 = 0 in equations (1) to ( S ) ,  we find that all but (2) and (3) are unchanged in 
form while these two become 

1;1O+w0&’ = 0 on y = 0, Po) 
$i--wo$ = 0 on y = 0. (3O) 

The zero-order problem, with (2O) and (3O) instead of (2) and (3), is just the 
classical linear problem. It has the unique solution 

= sint cosx, (11) 

$O = (12) 

u: = tanh h. (13) 

0 
cos t cos x cosh (y + h), 

We now assume that 7, $ and w have derivatives with respect to at E = 0 and 
we denote them by ql, $l and wl. Then we differentiate equations (1) to (8) with 
respect to 8 and let e tend to zero. In  differentiating (2) and (3) we utilize the 
relation 
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When we set E = 0 in the differentiated form of (1) and (4) to (7), these equations 
retain their form with the superscript ‘one’ affixed to 7 and 9. From (15), (16) 
and (S), we obtain 

7, + wo 92 = - “Y + (93,l - WOTOq5& - W1& on y = 0, (2,) 

9;-wo7; = 7:9“,-09”,++wlrF on Y = 0, (3,) 

To solve the differentiated equations for yl, and a,, we first insert into (2,) 
and (3l) the zero-order quantities given by (11) to (13). Upon doing this and 
simplifying the results, we obtain 

71 + w0& = Q[(d - w,2) + (fa; + w,,) cos 2x - ( 3 4  +w,2) cos 2t 

w 
-(3wE-wW,2)~~s2t c o s 2 x ] + ~ s i n t  cosx on y = 0, (17) 

0 0  
1 

q5$-woyt = --sin% cos2x+w1cost cosx on y = 0. (18) 
2WO 

Next we differentiate (17) with respect to t and eliminate -2 from (17) and (18). 
This elimination yields 

$;+ w;& = i(3c-o; + wrl) sin 2t + $(w; - wt1) sin 2t cos 22 

+2w,costcosz on y = 0. (19) 

To determine q5l we expand it in a Fourier cosine series since by (a), 4; = 0 at 
x = 0 and x = n. In  order that q5l satisfy (1) and (4), we find that it must be of 

the form m 

#l(x, y, t)  = C A,(t) cos nx cosh n(y +h). (20) 
n=O 

Insertion of (20) into (19) yields 

wi A,,, = i(3w: + w ~ l )  sin 2t, 

w: cosh h . Alt, + sinh h. A,  = 2w, cos t, 

wt  cosh 2h. A,,, + 2 sinh 2h. A ,  = $(w; - w c l )  sin 2t, 

+: cosh nh. A,,, + n sinh nh. A ,  = 0 (n = 3,4, . . .). 

(21) 

(22) 

(23) 

(24) 

From (6) and (20) we see that all A ,  with n 2 1 must be periodic in t with period 
2n. Then from (10) and (24) it follows that A,  = 0 for n 2 3. From (10) and (23), 
we have 

(wo- 00’) sin 2t. (25)  
3 

= - 16 cosh 2h 

The periodicity of A ,  requires w, = 0, and (22) yields 

A,  = a1 sin t + B1 cost. 

A ,  = - &(30, + 0c3) sin 2t + a,t +Po. 

(26) 

(27) 

Here aI and ,8, are constants so far undetermined. Finally (21) yields 

Here a, and ,8, are also undetermined constants. 



446 Iradj  Tadjbakhsh and Joseph B.  Keller 

We now insert the above results into (20), use the resulting expression for q5' 
in (17), and solve ( 1 7 )  for 7,. This yields 

= Q(w: - w c 2 )  - woao - wo(al cos t - p1 sin t )  cos x cosh h 

+Q(w~+o;~)cos 2x+Q(wc2-  ~ w , ~ ) c o s ~ ~  cos2x. (28 )  

By applying (7) to 7, we find a, = 0. Application of (8,) to q1 yields /3, = 0. 
Utilization of (5) leads to 

a0 = &(wo - w r 3 ) .  

Now that all constants except the inconsequential Po have been determined, the 
solution ~ l ,  q5l and w, is completely determined. It is given by 

( 3 0 )  71 = *[(w,z - w,2) + (w;2- 3w;G) cos Bt]  cos 22, 

x sin 2t COB 2x cosh 2(y  + h),  (31 )  
w, = 0. ( 3 2 )  

It is interesting to observe that 71 contains a non-constant term which is in- 
dependent of t and that $1 contains t-dependent terms independent of x and y, 
one of which is not periodic in t. 

Let us now assume that 7, q5 and w have second derivatives with respect to E 

at 6 = 0, and let us denote them by y2, q52 and w2. To determine them we differ- 
entiate equations ( 1 )  to (8) twice with respect to E and set E = 0. Equations ( 1 )  
and ( 4 )  to (7) remain unchanged in form while (8) takes the form of (Sl), with the 
superscript 'two' affixed to 7 and (s. The twice differentiated form of ( 2 )  and ( 3 )  
is most easily found by differentiating (15) and (16 ) .  To solve the resulting 
equations we proceed exactly as before. Upon eliminating q2 from (Z2) and (32 ) ,  
we obtain 

$5; + w,z q5Ft = a,, cos t cos x + a,, cos t cos 3x + a,, cos 3t cos x + a,, cos 3t cos 3x. 

Here the constants aij are given by (33 )  

= ~ ( 9 w ~ 7  - 22w;3 + m,). 
In  solving for q52 as before we find that a,,, the coefficient of cos t cos x, must 

vanish. This yields for wg the result 

w2 = 7&(9~;~  - 1%~;~- 3w0 - 2 ~ : ) .  ( 35 )  

Then calculations like those previously given lead to the following solutions for 
q2 and $2 

Y,P = b,, sin t cos x + b,, sin t cos 32 + b,, sin 3t cos x + b,, sin 3t cos 32, 

+p3, cos 3t cos 3x cosh 3(y  + h ) .  

(36 )  

q52 = pz + pi3 cos t cos 32 cash 3 ( y  + h) + p31 cos 3t cos x cash ( y  + h) 

( 3 7 )  
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(1+30,4) (30<9-550<1+2w3, 
p13 = i!zG&rn 

(9wt9+ 6 2 ~ ; ~ -  31w<l), 
1 

'31 = 128 cosh h 

p33 = 138 cosh 3h 
1 

(1 + 3 4 )  ( - 96)0113 + 22wr9 - i3w,p). 
I 
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(39) 

Here p2  is arbitrary and the other constants are given by 

b,, = & - ( 3 ~ < ~ + 6 ~ c ~ - 5 + 2 2 ~ $ ) ,  

b13 = & ( 9 ~ , j - ~ + 2 7 0 < ~ -  15+~$+2w:), 

b3, = & 7 ( 3 ~ < ' +  180~;~- 5), 

b,, = &( - 9wol2+ 3wc8- 30g4+ l), 

and 

4. Discussion 
The finite Taylor expansions of €7, eq5 and w are 

€7 = ETo(x, t )  + +l(X, t )  + ge3y2(x, t )  + 0 ( € 4 ) ,  

€+ = €+o(X, y, t )  + +1(x, y, t )  + 4S3q52(x7 y, t )  + 0 ( € 4 ) ,  

(40) 

(41) 

= w o + ~ 6 2 W 2 + ~ ( e 3 ) .  (42) 

The zero-order solution is given by equations (1 1) to (13), the first-order solution 
by (30) to (32) and the second-order solution by (35) to (37). 

On the basis of (42) we see that the frequency w depends upon the 'amplitude' 
E of the wave motion, as is usually the case for non-linear systems. By examining 
(35) we find that w2 = 0 at wo + 0.89 which corresponds to h = h* + 1.07. For 
h > h*, w2 < 0 while for h < h*, w2 > 0. Thus, for depths greater than h*, the 
fluid behaves like a soft spring, its free vibration frequency decreasing with 
increasing amplitude. For depths shallower than h", the fluid behaves like a 
hard spring, its free vibration frequency increasing with increasing amplitude. 

From (40) and the expressions for yo, y1 and y2, we see that the surface is never 
flat. It is most nearly so when t = nn- where n is any integer. Then 

q ( x ,  nn) = +e2(wi + 2wr2- 3wcG) COB 22. (43) 

The velocity vanishes throughout the fluid at t = (n + $) n-. At these times each 
part of the surface is either at its highest or lowest position. In  particular, when 
n is an even integer, the crest is at  x = 0 and the profile is given by 

€7 = E + ~ (9~;' + 60,~ - 15 + 8 ~ $ )  cos x + & 2 ( ~ < 2  + 3~;') cos 2x [ 2E536 1 
+ h e 3 (  9@&l2 + 6wg8 + 3 0 ~ ~ ~  - 16 + 00" + 2 ~ : )  cos 3 ~ .  (44) 

The greatest rise occurs at  x = 0, and it is equal to 

€3 

256 
€ymax = e + i s 2 ( ~ < 2 + 3 ~ < G ) + -  ( 2 7 0 < ~ ~ + 2 7 ~ 0 ~ + 9 6 w c ~ - 6 6 3 +  llw$+6w:). 

(45) 
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When t = (n + 4) T, with n an odd integer, the crest is at x = 7 ~ .  The wave profile 
at this time may be obtained either by reflecting that given by (44) about x = in, 
or replacing e by - E  in (44). A graph of the surface profile for E = 0.05 and 
h = 0-25 is shown in figure 1. 

I 

-01 

h 

. 

\ 

FIGURE 1. Profile of the surface of the standing wave at t = (n + 3) m, for n even (solid 
curve) and n odd (broken curve). These curves are bwed on equation (44) with e = 0.05 
and h = 0.25. 

When the depth h becomes infinite, our results (40) and (42) become 

€7 = (E + AE3) cos x + cos 22 + *E3 COB 3x, (46) 

(47) 0 = 1 -L$. 8 

These results agree with those of Penney & Price who obtained additional terms 
in this case. 

In  calculating the pressure from (9) it is convenient to consider those instants 
when the fluid is at rest. Then in the vertical plane x = 0 and a t  the time of a 
crest, (9) becomes 

k cosh (y + h) 
- ( p - p 0 )  = -y+ 
PS coshh 

(1 + 304) (27~;~' 

- 63wF8+ 3 9 ~ ; ~  - 5 + 20;) cosh3(y+h) ~ _ _ _  for -h < y < rmax. (48) cosh 3h 

Upon replacing G by - E in (48), we obtain the pressure in the vertical plane x = 0 
at the time of a trough. Graphs of these pressures are shown in figure 2 for 
e = 0.05 and h = 0.25. 

When the depth h becomes infinite, our result (48) becomes 
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This result agrees to the third order with the equation (135) of Penney & Price 
with the exception of the term independent of y. The difference arises from the 
fact that Penney & Price did not take into account the contribution of the zero 
order term in their potential function a. Had they done this by utilizing their 
equation (47), the correct form of their equation (135) to the fifth order would 
have been 

p = -[-y-+A2+&A4+(A-+&43+&$45)ey hP9 
2n 

- L A 4 e 2 ~ -  ( L A S ) e 3 y +  ( X A S ) e W ] .  
14 1 3 2  2 5 6  

Our solution describes the standing wave which results from the reflexion of 
a normally incident progressing wave from a wall or breakwater at  x = 0. It 
also describes the free vibrations of the liquid contained between two vertical 
walls one-half wavelength apart. In either of these cases the pressure given by 
(48) and shown in figure 2 is the pressure on the wall. 

FIGURE 2. Pressure as a function of depth at 5 = 0 for t = (n + * ) T ,  n even (upper curve) 
and n odd (lower curve). These curves are based on equation (48) withe = 0.05 andh = 0.255. 
The horizontal scale is k( p -p,)/pg and the vertical scale is y. The dashed parts are sketched 
in to make p -p ,  have the value zero a t  the surface y =q-= and y =q*. Equation 
(48) does not yield p - p ,  = 0 a t  these points since it is correct only through e3. 

Appendix 
Following Penney & Price (1952), we write 7 and g5 in a form which obviously 

satisfies (l), (4) and ( 5 ) .  It is 
m 

n= 1 
m 

€7 = ctn(t) cosnx, (1) 

e$ = /3&) eny cos nx. (2) 
n=-w 

Fluid Meoh. 8 29 
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To satisfy (4) the coefficients B,(t) and ,O-,(t) must obey the relation 

Iradj Tadjbakhsh and Joseph B. Keller 

en"P-n(t) = e-"'bb,(t). (3) 

Upon inserting (1) and (2) into (2) and (3) of Q 2, we obtain the following equations 
for the determination of a,, P, and w :  

W l W  
a, = - C @;[E(n,s-n) +E(n,s+n)] -., C mn 

n = - w  y n=- w m=- w 

~~~P,[E(m+n, s -m+n)+E(rn+n , s+m-n)]  for s = 0 , 1 , 2 ,  ..., (4) 

1 "  m 

oai = C nPn[E(n, s - n) + E(n, s + n)]  - c c mn amp, 
n = - m  A= - m m =  1 

x [E(n,s-m+n)+E(n,s+m-n)-E(n,a-m-n)-E(n,s+m+n)] 

for 8 = 0 , 1 , 2 ,  .... (6) 

Here a prime denotes differentiation with respect to t and the quantity E(h, s) 
is defined by the equations 

W W 00 

S,( + 8 )  = 2 C C ... amanor, ...a,-m-.n-p, ..., (7) 

a-k = ak (k = 1 , 2 , 3  ,... ). (8) 

m=-w n = - m  p = - w  

Instead of using the iteration method of Penney & Price, we solve (4) and (5) 
by assuming that a,, Pn and o can be expressed as 

W 

€a, = 2 a&, 

e P s  = c Ps,ci, 

w = 2 Wid. 

E(h, s )  = C Ej(h,  s) €j. 

j = s  

W 

i=bl 

W 

j=O 

Then E(h, s) can be written as 
m 

j=Is1 

We now insert equations (9) to (12) into (4) and ( 5 )  and equate the coefficients 
of the powers of E .  In  this way we obtain, for each pair of integers v 2 s > 0, the 
equations 

v v j  

n=-vj=lnl k=O 
us = - C C C o,Pk(j-k)[Eli-j(n, 8-  n> +&-j(n, + n)l 

1 "  v v v  

2 n=-vm=O j=mi=lnl 
-- I: C C C mna,jP,i[Ev-i-j(m+n,s-m+n) 

+ Ev-i-j(m + n, s + m - n)],  ( 13) 
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- EV++(n, s - m - n) - Ev-i-j(n, s + m + n)]. (14) 

These equations can be solved successively, starting with s = v = 0. We have 
solved them for all s and v satisfying 3 2 v 2 s 2 0. The results are the same 
as those of 5 3, but the labour is greater. 

The research reported in this paper has been sponsored by the Office of Naval 
Research under Contract No. (285) 45. 
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